
J. Fluid Mech. (2005), vol. 537, pp. 145–154. c© 2005 Cambridge University Press

doi:10.1017/S0022112005005215 Printed in the United Kingdom

145

Convection in a narrow annular channel
rotating about its axis of symmetry

By F. H. BUSSE
Institute of Physics, University of Bayreuth, D-95440 Bayreuth, Germany

busse@uni-bayreuth.de

(Received 4 February 2005 and in revised form 12 April 2005)

The onset of convection in a narrow cylindrical annulus heated from below and
rotating about its vertical axis of symmetry is considered in the case when the rigid
cylindrical walls are thermally insulating. An analytical expression is derived for
the Rayleigh number R for onset of convection as a function of rotation rate and
azimuthal wavenumber. The critical value Rc for high rotation rates is much lower
than the corresponding value in an extended layer. At finite amplitudes the convection
flow generates a differential rotation which is antisymmetric with respect to the middle
of the layer and is prograde near the outer wall for low rotation rates, but changes
sign for higher values of the rotation parameter.

1. Introduction
Convection in horizontal layers of fluid heated from below and rotating about a

vertical axis has long been a subject of intense research because of its applications
to convection processes in the atmosphere and in the oceans. Numerous laboratory
experiments have been devoted to this subject and many theoretical analyses and
computer simulations have been published. For a recent introduction refer to the
book by Boubnov & Golitsyn (1995). In the course of this research the importance of
the sidewalls of the cylindrical or rectangular convection boxes was realized relatively
late. Goldstein et al. (1993) were the first to demonstrate convincingly that convection
modes attached to the sidewalls may set in at values of the Rayleigh number
significantly below the value for onset of convection in an infinitely extended layer
(Chandrasekhar 1961). A boundary layer theory for the sidewall-supported convec-
tion was developed independently by Herrmann & Busse (1993) and by Kuo & Cross
(1993). Numerous experimental studies of the sidewall modes have been published;
see, for instance, Liu & Ecke (1999) and references therein.

In this brief report we consider the onset of convection and its weakly nonlinear
properties in the case of a narrow channel heated from below whose height is much
larger than its width. As shown in figure 1 this configuration may thus be regarded
as the limit opposite to that of an infinitely extended layer. In contrast to the case
of a single sidewall the onset of convection is non-oscillatory. This may be expected
from the property that the sidewall modes propagate with the same speed in opposite
directions as long as the parallel sidewalls are sufficiently far apart. As the two
sidewalls approach each other the interaction of the two sidewall modes gives rise
to a steady pattern of convection. We use the term ‘annular’ for our configuration
since it will be realized experimentally most easily in the narrow gap between two
coaxial cylindrical walls rotating rigidly about their common axis. Since the width of
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Figure 1. Geometrical configuration of the problem.

the annular gap is small compared to its radius it is appropriate to use a Cartesian
coordinate system as indicated in figure 1 and to use periodic boundary conditions in
the azimuthal y-direction.

After a short formulation of the mathematical problem in § 2 an analytical solution
will be derived in § 3. Nonlinear properties such as a mean flow associated with finite-
amplitude convection will be considered in § 4. Concluding remarks and outlooks on
related problems will be given in § 5.

2. Mathematical formulation of the problem
We consider a fluid-filled cylindrical annulus rotating with constant angular velocity

Ω about its vertical axis of symmetry. The gap width d between the two coaxial
cylindrical walls is assumed to be small in comparison with their radii and their
height, hd , such that locally the approximation of a straight narrow channel can be
assumed as indicated in figure 1. The temperature at the horizontal bottom of the
annulus is assumed to be fixed at the constant value T2. Similarly the horizontal
top boundary is kept at the lower value T1. The vertical walls are assumed to be
thermally insulating. Since effects of the centrifugal force will be neglected based on
the assumption Ω2r0 � g where r0 is the mean radius of the annulus, a static solution
of the problem with the temperature distribution T (z) = (T1 + T2)/2 − (T2 − T1)z/h is
possible. Here z is the dimensionless vertical coordinate measured in multiples of d .

Using d as length scale, d2/κ as time scale where κ denotes the thermal diffusivity
of the fluid, and (T2 − T1)/R as scale of the temperature we obtain the equations of
motion for the dimensionless velocity vector v and the heat equation for the deviation
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Θ of the temperature from its static distribution in the following form:

P −1(∂t + v · ∇)v = −∇π + kΘ/h + ∇2v − τhk × v, (2.1a)

0 = ∇ · v, (2.1b)

(∂t + v · ∇)Θ = Rk · v/h + ∇2Θ, (2.1c)

where k is the unit vector in the z-direction and the Prandtl number, the Coriolis
parameter, and the Rayleigh number are defined by

P =
ν

κ
, τ =

2Ωd2

νh
, R =

γ (T2 − T1)gd3h

νκ
. (2.2)

Here ν and γ denote the kinematic viscosity and the coefficient of thermal expansion
of the fluid, g is the acceleration due to gravity, and h is the height to width ratio of
the annular channel. The Boussinesq approximation has been assumed in which the
density ρ is regarded as a constant except in connection with the gravity term. All
terms in equation (2.1a) that can be written as gradients have been combined into
∇p.

It is convenient to introduce the general representation for the solenoidal velocity
field v,

v = ∇ × (∇Φ × i) + ∇Ψ × i ≡ δΦ + ηΨ, (2.3)

where i is the unit vector in the x-direction normal to the outer wall. By taking the
x-components of the (curl)2 and of the curl of equation (2.1a) two equations for Φ

and Ψ are obtained:

∇4�2Φ − τh∂z�2Ψ + ∂2
xzΘ/h = (δ · (v · ∇v) + ∂t∇2�2Φ)P −1, (2.4a)

∇2�2Ψ + τh∂z�2Φ − ∂yΘ/h = (η · (v · ∇v) + ∂t�2Ψ )P −1, (2.4b)

where �2 denotes the two-dimensional Laplacian, �2 = ∂2
yy + ∂2

zz. These equations
must be solved in conjunction with the heat equation,

(∇2 − ∂t )Θ + R
(
∂2

xzΦ − ∂yΨ
)/

h = (δΦ + ηΨ ) · ∇Θ. (2.5)

The boundary conditions at the rigid cylindrical walls are given by

Φ = ∂xΦ = Ψ = ∂xΘ = 0 at x = ±1/2. (2.6)

Since we are interested in the case of large aspect ratio, h � 1, the conditions at the
upper and lower boundaries are of lesser importance. Since analytical solutions can
be obtained only for stress-free conditions we assume those for simplicity,

∂2
xzΦ − ∂yΨ = ∂3

zzzΦ + ∂3
yyzΦ = ∂3

xyz + ∂2
zzΨ = 0 at z = ±h/2. (2.7)

The solution derived below obeys these conditions since it satifies

∂zΦ = ∂3
zzzΦ = ∂yΨ = ∂2

zzΨ = Θ = 0 at z = ±h/2. (2.8)

We shall use ε ≡ π2/h2 as expansion parameter for a perturbation analysis of the
linearized version of equations (2.4) and (2.5),

Θ = Θ0 + εΘ1 + · · · , Φ = Φ0 + εΦ1 + · · · ,
R = R0 + εR1 + · · · , Ψ = Ψ0 + εΨ1 + · · · .

}
(2.9)

Anticipating that the scale of convection in the y-direction will be of the same order
of magnitude as in the z-direction we write the solution of the heat equation (2.5) in
lowest order:

Θ0 = cos(πz/h) exp{iα
√

εy + iωt}, (2.10)
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where we have used the property that the boundary conditions permit an x-
independent solution.

3. Solution of the linear problem
The symmetry of equations (2.4) requires that Φ0 and Ψ0 assume the form

Φ0 = ϕ0(x) sin(πz/h) exp{iα
√

εy + iωt}, Ψ0 = ψ0(x) cos(πz/h) exp{iα
√

εy + iωt}.
(3.1)

Anticipating that ω is a small quantity we neglect the right-hand sides of (2.4) in the
linear limit of the problem and obtain through elimination of ψ0(x) the equation(

d6

dx6
− τ 2π2

)
ϕ0(x) = iατ/(1 + α2) (3.2)

for ϕ0(x). It yields the solution

ϕ0(x) = iα[τπ2(1 + α2)]−1ϕ̂(x) with ϕ̂(x) = −1 +

3∑
n=1

an cosh λnx (3.3)

where the λn are given by

λ1 = (τπ)1/3, λ2 = λ+
3 = 1

2
(1 + i

√
3)(τπ)1/3 (3.4)

and the coefficients an are determined by the boundary conditions ϕ̂(x) = (d/dx)ϕ̂(x) =
(d4/dx4)ϕ̂(x) = 0 at x = ±0.5. As a result the following expressions are obtained:

a1 = −
(
a2λ2 sinh

(
λ2

1
2

)
+ a+

2 λ
+
2 sinh

(
λ+

2
1
2

))/(
λ1 sinh

(
λ1

1
2

))
, (3.5a)

a2 = D
/[(

3
2

+ i 1
2

√
3
)
D cosh

(
λ2

1
2

)
− c.c.

]
= a+

3 , (3.5b)

with

D = τλ+
2

(
sinh

(
λ+

2
1
2

)
+ tanh

(
λ1

1
2

)
cosh

(
λ+

2
1
2

))
(3.6)

where the superscript + indicates the complex conjugate and c.c. stands for the
complex conjugate of the preceding term.

At the next order the equation for Θ1 is given by

∂2
xxΘ1 = (iω/ε + 1 + α2)Θ0 − R0

(
∂2

xzΦ0

/√
ε − iαΨ0

)/
π. (3.7)

The solvability condition for this equation is obtained when the right-hand side is
multiplied by Θ+

0 and averaged over the fluid layer,

R0iα〈Θ+
0 Ψ0〉/π = −(iω/ε + 1 + α2)/2 (3.8)

where the bar indicates the average over the interval −0.5 � x � 0.5 and the angular
brackets indicate the average over surfaces x = const., i.e. over −∞ � y � ∞ and over
−0.5h � z � 0.5h. ω must vanish according to this relationship because ψ0(x) is purely
imaginary. Since the latter function is also proportional to α/(1 + α2) it can already
be concluded at this point that R0 reaches its minimum as a function of α for α =1.
Using the relationship ψ0(x) = −(d4ϕ0(x)/dx4)/τπ we can evaluate (3.8) and obtain

R0 = τπ3 (1 + α2)2

2α2

tanh 2ξ [(sinh ξ )2 + (cos ξ̂ )2] + sinh ξ cosh ξ +
√

3 sin ξ̂ cos ξ̂

(sinh ξ )2 + (sin ξ̂ )2 + tanh 2ξ (sinh ξ cosh ξ −
√

3 sin ξ̂ cos ξ̂ )
(3.9)
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Figure 2. The Rayleigh number R0 as a function of τ .

where the definitions ξ =(τπ)1/3/4 and ξ̂ =
√

3ξ have been used. In the limit of large
τ , R0 increases in proportion to τ ,

R0 = τ
(1 + α2)2

2α2
π3 for τ → ∞, (3.10)

while in the limit of vanishing τ the expression

R0 = 12π2 (1 + α2)2

α2
for τ = 0 (3.11)

is obtained which corresponds to the Rayleigh number for onset of convection in a
Hele-Shaw cell (Wooding 1960). A plot of the critical Rayleigh number as a function
of τ is given in figure 2 which shows the smooth connection between the asymptotic
relationships (3.10) and (3.11). It is remarkable that for large τ the Rayleigh number
R∗ based on the height of the channel, R∗ ≡ Rh2, depends on the rotation parameter τ ∗

based on the height dh, τ ∗ ≡ τh3, in such a way that convection sets in at a value of R∗

which is of the order h−1 lower than the corresponding value for the onset of convec-
tion in an extended layer with a single sidewall, R∗ = τ ∗π2(6

√
3)1/2 (Herrmann &

Busse 1993). This property originates from the fact that the x-dependence of Θ

vanishes in first approximation and that in the presence of two parallel walls no time
dependence is needed to achieve an optimal phase relationship between the variables
Θ, Φ , and Ψ . The critical value of the Rayleigh number for the onset of convection
in an unbounded layer is, of course, even higher for large values of τ ∗ since is grows
proportionally to (τ ∗)4/3 according to Chandrasekhar (1961).

The functions ϕ̂(x) and ψ̂(x) ≡ (d4/dx4)ϕ̂(x)/(πτ )4/3 are shown in figure 3. For
τ = 10 the functions differ little from their counterparts in the non-rotating case.
In particular, ψ̂(x) approaches the parabolic profile assumed in the Hele-Shaw cell.
Computations of convection in non-rotating channels have been done by Davies-
Jones (1970). His results demonstrate quite well that the x-independence of Θ is
closely approached even though his maximum value of h is only 2. At high values
of τ the boundary layer character of the velocity field becomes apparent, with ψ̂(x)
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Figure 3. The functions ϕ̂(x) and ψ̂(x) ≡ (d4/dx4)ϕ̂(x)/(πτ )4/3 are shown for τ = 10
(dash-dotted line), τ =100 (dotted line), τ = 1000 (dashed line), and τ = 10000 (solid line).
Since the functions are symmetric in x they have been plotted only for positive x. Except for
the case τ = 10, ϕ̂(x) is close to −1 and ψ̂(x) is close to 0 at x = 0.

vanishing in the interior while ϕ̂(x) approaches unity there as vx satisfies the thermal
wind balance, τh∂zvx = −∂yΘ/h. The typical horizontal scale of the wall-attached
convection scales with τ−1/3 and its form approaches that shown, for instance, in the
boundary layer analysis of Herrmann & Busse (1993). A typical feature, for instance,
is the change of sign of ψ̂(x) at the distance of 2τ−1/3 from the walls. The τ−1/3-scale
at the sidewall corresponds to the familiar E1/3-scaling of Stewartson layers at walls
parallel to the axis of rotation where the Ekman number E = 2/τ ∗ is defined with the
height of the layer.

In principle axisymmetric forms of convection are also possible corresponding to
y-independent solutions of (2.1). But since the Rayleigh number for the onset of these
solutions will be of the order ε−1, there is no need to consider them here.

4. Nonlinear properties
In order to attack the weakly nonlinear problem we extend the representation (2.8)

by considering the double expansion

Θ =

∞∑
m=1,n=0

AmεnΘmn, Φ =

∞∑
m=1,n=0

AmεnΦmn,

Ψ =

∞∑
m=1,n=0

AmεnΨmn, R =

∞∑
m=0,n=0

AmεnRmn,




(4.1)
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where A measures the amplitude of convection and where Θ10, Φ10, Ψ10 correspond to
the real parts of Θ0, Φ0, Ψ0. R00 is identical to R0, of course. We define the amplitude
A by A= 4〈ΘΘ10〉 such that the normalization condition

〈ΘmnΘ10〉 = δ0nδ1m/4 (4.2)

is obtained. A main task is the determination of the coefficients R10, R20 which describe
the dependence of the amplitude A on the supercritical Rayleigh number. We shall
focus attention first on the limit of large Prandtl numbers in which case the terms on
the right-hand sides of (2.4) can be neglected.

The equation ∂2
xxΘ20 = 0 at order A2ε0 is solved by Θ20 = g(y, z) where g(y, z)

must still be determined subject to the boundary conditions and the normalization
condition (4.2). In the order A2ε1 we obtain the equation

∂2
xxΘ21 + R00

(
∂2

xzΦ20 − ∂yΨ20

)/√
επ

=
(
∂2

yy + ∂2
zz

)
Θ20/ε − R10

(
∂2

xzΦ10 − ∂yΨ10

)/√
επ + (δΦ10 + ηΨ10) · ∇Θ10/ε. (4.3)

The factors
√

ε and ε appear in this equation since they are needed to compensate the
corresponding derivatives in order that all terms are of order unity. The solvability
condition for equation (4.3) is obtained when the right-hand side is multiplied by
Θ10 and averaged over the fluid layer as indicated by the overline together with the
angular brackets,

−
√

ε

π
R10〈Θ10∂yΨ10〉 = 〈Θ10(δΦ10 + ηΨ10) · ∇Θ10〉

= 〈∇ · ((δΦ10 + ηΨ10)(Θ10)2/2)〉 = 0 (4.4)

Here we have used that the terms involving Θ20 and Ψ20 in equation (4.3) do not
contribute in the solvability condition (4.4) because of the normalization condition
(4.2). Since R10 vanishes according to equation (4.4) we obtain the following equation
for Θ20 by averaging equation (4.3) over x as is indicated by the overline:

(
∂2

yy + ∂2
zz

)
Θ20 = ηΨ10 · ∇Θ10 = −εα2d4ϕ̂(x)/dx4

2τ 2π3(1 + α2)
sin(2πz/h). (4.5)

Because the y-dependence of Θ20 has vanished, Φ20 and Ψ20 vanish as well.
In order to determine R20 the solvability condition for the equation for Θ31 must

be considered, which assumes the form

−
√

ε

π
R20〈Θ10∂yΨ10〉 = 〈Θ10(δΦ10 + ηΨ10) · ∇Θ20〉

= −〈∂yΨ10Θ10∂zΘ20〉 = ε

(
α2d4ϕ̂(x)/dx4

4τ 2π3(1 + α2)

)2 /
2 (4.6)

in analogy to condition (4.4). Using equation (3.3) we obtain an expression for R20 in
the form

R20 =
(1 + α2)π2

8R0

. (4.7)

A detailed inspection of the right-hand sides of equations (2.4) reveals that those
terms cannot contribute to R20 and will become relevant only at higher orders of ε.
The expression (4.7) is thus valid for arbitrary Prandtl numbers and the restriction
mentioned above is thus not necessary. An important nonlinear property of convection
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is the Nusselt number Nu which can now be derived as a function of R − R0,

Nu − 1 = −hA2∂zΘ20|z=0.5/R = −α2d4ϕ̂(x)/dx4(R − R0)

4τ 2π2(1 + α2)RR20

=
2(R − R0)

R
. (4.8)

It is remarkable that the expression on the right-hand side does not depend explicitly
on the rotation parameter τ . The influence of rotation enter only through R0. In the
limit τ = 0 the expression for the Nusselt number is the same as that which has been
derived for convection rolls in a horizontal fluid-filled porous layer (see, for instance,
Palm, Weber & Kvernvold 1972 or Chapter XI of Joseph 1976). The latter problem
is, of course, mathematically identical to the problem of convection in a Hele-Shaw
cell.

Among the nonlinear properties induced by convection the mean flow in the
azimuthal direction, 〈∂zΨ 〉, is of special interest. It is determined by the average over
surfaces x = const. of equation (2.1a),

d2

dx2
〈∂zΨ 〉 = − d

dx

〈
�2Φ

(
∂2

xyΦ + ∂zΨ
)〉

P −1. (4.9)

At the lowest orders of ε 〈∂zΨ 〉 vanishes, 〈∂zΨm0〉 =0 for m � 1. But for 〈∂zΨ21〉 a
finite result is obtained,

ε
d2

dx2
〈∂zΨ21〉 = − d

dx

〈
�2Φ10

(
∂2

xyΦ10 + ∂zΨ10

)〉
P −1

=
d

dx

(
ϕ̂(x)

d4ϕ̂(x)

dx4

) α2ε

4τ 3(1 + α2)π4hP
. (4.10)

At lowest order the mean flow Uy(x) is thus given by

Uy(x) = εA2〈∂zΨ21〉 = A2
(π

h

)3 α2

4(τπ)5/3(1 + α2)P
û(x) (4.11)

where û(x) is defined by

û(x) =

( ∫ x

0

ϕ̂(x̂)
d4ϕ̂(x̂)

dx̂4
dx̂ − 2x

∫ 1/2

0

ϕ̂(x̂)
d4ϕ̂(x̂)

dx̂4
dx̂

)/
(τπ)4/3 (4.12)

where the property has been used that the integrand of the integrals is symmetric with
respect to x =0. Evidently expression (4.12) satisfies the boundary conditions û= 0 at
x = ± 1

2
. An explicit analytical expression for Uy could be derived, but because of its

complexity it will not be given here.

5. Concluding remarks
The problem treated in this paper for which gravity acts parallel to the axis of

rotation must be clearly distinguished from the case of convection in a cylindrical
annulus with gravity acting at a right-angle to the axis of rotation (Busse 1970). The
latter problem is usually realized through the use of the centrifugal force as effective
gravity. The analysis of the present paper neglects the centrifugal force and is thus
limited by the condition Ω2r0 � g where r0 is the mean radius of the cylindrical
annulus. Nevertheless high values of τ may be realized if sufficiently low values of
the kinematic viscosity are used. Inclusion of the centrifugal force would prevent the
static basic solution on which the analysis has been based.

The symmetry of the solutions that we have considered is such that higher-order
contributions will not change the symmetry of the mean flow Uy . For this reason
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Figure 4. The mean flow profile û(x) for the values of τ as indicated.

there will not be an advection of the convection pattern by the mean flow and the
frequency ω will vanish in all orders of the problem. In a laboratory experiment, of
course, deviations from the asymptotic small gap limit cannot be avoided in general
and small asymmetries with respect to the mid-surface of the annular channel must
be expected. Slow drifts of the convection pattern are thus likely to be observed in
experimental realizations of the problem. The mean flow induced by convection is an
especially interesting feature of the problem. It has already been considered in the
early work of Davies-Jones & Gilman (1971) where, by the way, convection modes
propagating along the rigid sidewalls were computed for the first time. For their
steady convection mode these authors find for τ = 80 an antisymmetric differential
rotation with prograde motion on the outside in general agreement with the results
displayed in figure 4. Quantitative comparisons with their computational results are
not possible since they used only the value h = 0.5. Another computation of a mean
flow induced by sidewall-attached convection in a rotating annular channel has been
carried out by Plaut (2003). For values of τ of the order 200 he finds that the mean
flow is mainly retrograde in agreement with the results shown in figure 4. It thus
appears that the changeover from a prograde mean flow on the outside to a retrograde
one with increasing τ as seen in figure 4 is a fairly robust feature of convection in
rotating annular channels.

The hospitality of the Faculty of Engineering Science at the EPFL, Lausanne,
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to thank Dr D. Krimer for help in creating the figures.
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